
J .  Fluid Mech. (1996). vol. 310, pp .  39-60 
Copyright 0 1996 Cambridge University Press 

39 

Averaging of unsteady flows in heterogeneous 
media of stationary conductivity 

By PETER INDELMAN 
Department of Fluid Mechanics and Heat Transfer, Faculty of Engineering, Tel Aviv University, 

Ramat-Aviv, 69978 Tel Aviv, Israel 

(Received 29 November 1994 and in revised form 8 September 1995) 

A procedure for deriving equations of average unsteady flows in random media of 
stationary conductivity is developed. The approach is based on applying perturbation 
methods in the Fourier-Laplace domain. The main result of the paper is the 
formulation of an effective Darcy’s Law relating the mean velocity to the mean head 
gradient. In the Fourier-Laplace domain the averaged Darcy’s Law is given by a linear 
local relation. The coefficient of proportionality depends only on the heterogeneity 
structure and is called the effective conductivity tensor. In the physical domain this 
relation has a non-local structure and it defines the effective conductivity as an integral 
operator of convolution type in time and space. The mean head satisfies an unsteady 
integral-differential equation. The kernel of the integral operator is the inverse 
Fourier-Laplace transform (FLT) of the effective conductivity tensor. The FLT of the 
mean head is obtained as a product of two functions: the first describes the FLT of 
the mean head distribution in a homogeneous medium; the second corrects the 
solution in a homogeneous medium for the given spatial distribution of heterogeneities. 
This function is simply related to the effective conductivity tensor and determines the 
fundamental solution of the governing equation for the mean head. These general 
results are applied to derive the effective conductivity tensor for small variances of the 
conductivity. The properties of unsteady average flows in isotropic media are studied 
by analysing a general structure of the effective Darcy’s Law. It is shown that the 
transverse component of the effective conductivity tensor does not affect the mean flow 
characteristics. The effective Darcy’s Law is obtained as a convolution integral 
operator whose kernel is the inverse FLT of the effective conductivity longitudinal 
component. The results of the analysis are illustrated by calculating the effective 
conductivity for one-, two- and three-dimensional flows. An asymptotic model of the 
effective Darcy’s Law, applicable for distances from the sources of mean flow non- 
uniformity much larger than the characteristic scale of heterogeneity, is developed. 
New bounds for the effective conductivity tensor, namely the effective conductivity 
tensor for steady non-uniform average flow and the arithmetic mean, are proved for 
weakly heterogeneous media. 

1. Introduction 
Natural water- and oil-bearing formations exhibit significant erratic spatial 

variabilities in their ability to conduct fluids. In particular, it is common for the 
formation conductivity to vary by several orders of magnitude over the space. Such 
changes in spatial distribution of the conductivity field greatly affect the fluid flow and 
make the problem much more complicated. Moreover the flow problem constitutes a 
preliminary step for describing other processes occurring in porous formations. Thus, 
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the spatial distribution of phases and the efficiency of oil displacement depend in many 
respects on the structure of the heterogeneity. For transport of solute in groundwater, 
the variations in the fluid velocity control the macro-scale dispersion of the 
contaminant, phenomenon of great concern in recovering aquifers from pollutant 
spills (Dagan 1984; Cvetkovic & Dagan 1994). 

Flows of fluid in heterogeneous media have been studied intensively during the last 
three decades as a result of understanding the influence of heterogeneity on the flow 
and transport properties. The accepted approach to modelling flows in heterogeneous 
media is the stochastic one, that regards the conductivity as a random space function. 
In the stochastic approach the solution is represented as a set of all moments of the flow 
variables. In practice, however, the study is restricted by deriving mathematical models 
which provide only the few first moments. A central problem is to determine the 
governing equations for the average flow. For linear constitutive relationship, the 
problem resides in the averaging of the constitutive equation and determining the 
effective properties of the process. 

This paper addresses the problem of averaging of unsteady flows of water in random 
porous media of stationary conductivity. Mathematically equivalent problems are 
encountered in various other physical fields, e.g. heat transfer, electromagnetism and 
electricity (Batchelor 1974; Beran 1968). 

We consider flow in a porous medium whose conductivity K(x) is regarded as a 
random stationary function of spatial coordinate x. The simplest case widely reported 
in the literature is of steady-state flows, uniform in the average. The governing 
equations are the Darcy's Law vSt = -KESt relating the local velocity uSt to the local 
pressure head gradient E" = oh"' (h" being the hydraulic head) and the mass 
conservation balance V - vSt = 0. The aim is to derive equations satisfied by the mean 
pressure head (h") and the mean velocity ( v S t ) .  Since the mass balance equation is 
easily averaged to yield V - ( v s t )  = 0, the problem is the averaging of the Darcy's Law, 
i.e. deriving a relation between the mean pressure head gradient and the mean velocity. 
It is emphasized that only relations which are independent of the boundary conditions 
are sought. From a mathematical point of view this is possible only for infinite flow 
domains. In practice, they are applicable in the flow subdomains far from the sources 
of flow non-uniformity. Thus, for weakly heterogeneous media and for mean uniform 
flow in a bounded domain, the averaged Darcy's Law is valid at distances of a few 
scales of the log-conductivity heterogeneities from the boundaries (Rubin & Dagan 
1988, 1989). We neglect the effects of boundaries and consider the flow in infinite 
domains. Then, the assumption of the mean flow uniformity is satisfied if the boundary 
condition is lim,,,h"(x) = (E")  - x where (E")  is a constant mean head gradient. 
In this case the averaged Darcy's Law has the form 

( ~ 2 )  = -K${(E;t), (1) 

where the constant tensor KPff depends only on the statistics of K(x) and is called the 
tensor of effective conductivity. The following best bounds are known for Keff (e.g. 
Batchelor 1974; Matheron 1967b): 

K H /  < Keff < K A / ,  (2) 

where KH and KA are the harmonic and arithmetic means, respectively, and / is the unit 
matrix. It is emphasized that for given structure of heterogeneity, Keff is a constant in 
the flow domain. The bounds (2) are attained in stratified porous media for flows 
parallel and normal to the direction of layering. Considerable efforts have been 
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undertaken to calculate the effective conductivity tensor for different structures of 
media. Except for a few exact closed formulae, all results were obtained under various 
assumptions regarding the fluctuations of the conductivity field and they are reported 
in a few reviews and articles (e.g. Beran 1968; Dagan 1989; Shvidler 1985). 

In most applications, e.g. in the presence of space-distributed sources, the assuniption 
of flow uniformity fails and relation (1) is applicable only to the flow subdomains far 
from the wells. Moreover, for elastic media and for time-dependent boundary 
conditions, the flow is no longer steady. The main question is whether there exists a 
relation between the mean velocity and the mean head gradient which, similarly to the 
uniform steady flow, depends only on the statistics of K.  Although of a fundamental 
nature, this problem has received little attention in the litcrature. 

Several investigators have studied flow toward a single source of given deterministic 
strength. The solution of the equation for the pressure head is given by the Green 
function of the corresponding operator. The Green function is random, since such is 
the conductivity K. The averaged Green function describes the space distribution of the 
mean head for the flow toward a source and is referred to as a mean Green function. 
Shvidler (1966, 1985) has developed a perturbation analysis for steady flows in weakly 
heterogeneous media and has derived two asymptotical limits of the mean Green 
function at distances from the singular point much smaller and greater than the 
heterogeneity scale. He has shown that far from the well the medium can be treated as 
a homogeneous one of conductivity equal to the effective conductivity for steady 
uniform flow. In contrast, the mean head distribution in the vicinity of the well is 
described by the solution for a homogeneous medium with the conductivity equal to 
K H .  The same results were obtained for unsteady flows at large times (Shvidler 1966). 
Shvidler’s approach was expanded by Matheron (1967a, b) who derived the ratio 
between a mean specific discharge and a mean head gradient in a one-well-driven 
system. Matheron showed that for non-uniform steady flows a constant effective 
conductivity depending only on the statistics of K could not be defined. Later Freeze 
(1975) arrived to the same conclusion for one-dimensional unsteady flow. Several 
attempts (Ababou & Wood 1990; Naff 1991) have been made to derive expressions for 
the effective conductivity applicable for large variance of the logconductivity by 
regarding the Shvidler-Matheron results for steady flows as a first-order exponential 
series expansion. However, thorough numerical simulations by the Monte Carlo 
method (Desbarats 1992; Neuman & Orr 1993) did not confirm the conclusions of 
Ababou & Wood (1990) and were in contradiction with the approach of Naff (1991). 

It is emphasized that the effective conductivity determined in the above-mentioned 
investigations is obtained as a function of the coordinate vector and it is not applicable 
to distributions of sources other than the one-well system. In other words the 
relationship between the mean velocity and head gradient does not represent a 
constitutive equation. For steady-state flows a dependence of the mean flux on the 
mean head gradient was suggested in the general form of a linear non-local functional 
by Saffman (1971). Following the same reasoning Dagan (1989) discussed the 
expression for the mean flux on assuming that the mean head gradient is continuous 
and varies slowly. The first-order expression for the mean velocity in the 
logconductivity variance was derived by expanding the mean head gradient in a Taylor 
series. The averaging of unsteady flows without sources has been carried out for a case 
of small variations in the initial space distribution of the head gradient (Dagan 1982). 
The effective Darcy’s Law was obtained in a local form with effective conductivity 
changing from the arithmetic mean to the effective uniform value with growing time. 
The investigation of the averaged non-unifonn steady-state flows in bounded domains 
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was conducted by Neuman & Orr (1993). They show that the relationship between the 
mean velocity and the mean head gradient is non-local. 

The main objective of the present paper is to derive a general mathematical model 
of the average unsteady flows and to study their properties. This is achieved by a 
perturbation expansion in the Fourier-Laplace domain and subsequent solution of the 
equations for perturbations. The effective Darcy's Law is obtained by summing the 
perturbation series and leads to the definition of the effective conductivity. These 
general results are studied further for weakly heterogeneous media by deriving the first- 
order approximation of the effective Darcy's Law in the conductivity variance. 

2. Mathematical statement of the problem 
We consider the unsteady flow of a homogeneous fluid in a heterogeneous 

unbounded domain. The Darcy's velocity u and the hydraulic head h obey the 
following system of equations : 

U ( X ,  9 = - K(x) E(x, i-); E(x, Z) = Vh(x,  Z), (4) 
where K is the hydraulic conductivity and S = s /n  with s and n being the specific 
storativity and the porosity. A simple example of the source term 5 in (3) is a function 
of finite support in space, e.g. a system of singular sources and sinks. To simplify 
matters the storativity and the porosity are assumed deterministic and constant with 
n absorbcd in the definition of 6. The conductivity K is regarded as a stationary 
random space function of given statistics. 

We introduce a random space function e(x) as 

K(x)  = KA[l -E(x)]; ( G )  = 0, ( 5 )  

where KA = (K) is the mean conductivity. It is seen that the variance ( r2 of G is equal 
to the coefficient of variation of K, whereas the ( n  + 1)-point correlation functions of 6 

p(r l , .  . . , rn) = ( e ( x ) e ( x + r J .  . . e (x+r , ) )  (n  = 1,2,. . .) (6)  

are simply expressed through the (n + 1)-point correlation functions of K. In particular, 
the autocorrelation function p(r) is identical to that of K. 

Defining t = KA t /S,  the system (3) and (4) leads to the following equation for h : 

c'h(x, t )  
~- V"(x, t)  = - v * [G(X)  Vh(x, t ) ]  + $(x, t), 

at (7)  

where q3 = $/KA. 
The solution of (7) is sought subject to the arbitrary deterministic initial condition 

(8) w, 0 I t=O = h,(x), 

and to the boundary condition limz-,K h(x) = 0 where x = 1x1. 

Fourier transform (FT) in space where the latter is defined by 
Equation (7) is solved by applying the Laplace transform (LT) in time and the 

B(k) = dx e(x) exp (ik - x). J 
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The following notation is adopted in the paper: in the Fourier domain we use the 
independent variables k or p ,  whereas the variable of the LT is A. The FT of the 
function Ax, t )  is denoted by a tilded quantity x k ,  t ) .  The LT is referred to as a 
'checked' function Ax, A). Applying the Fourier-Laplace transform (FLT) leads to the 
'hatted' function Ak, A)  of k and A. 

The FLT of the head satisfies the integral equation resulting from (7) and (8) 

where $(k, A) is the FLT of q5, E(k) and &(k) are the FT of E ( X )  and h,(x), respectively, 
and d is the space dimensionality. 

The solution of (9) is sought by expanding the head's FLT in a powers series in E :  

h(k, A) = h'O'(k, A) + P ( k ,  A)  + P ( k ,  A) + . . . ; / P ) ( k ,  A) = O(Ern). (10) 

Substituting (10) in (9) and collecting terms of the same order leads to the following 
system of equations : 

The system (10)-(12) determines the FLT of the head. Note that the inverse FLT of 
the zero-order approximation @')(k, A) yields the head distribution in a homogeneous 
media of constant conductivity KA.  The system (11) adjusts the 'homogeneous' 
solution (12) to the actual one with increasing order of accuracy in the conductivity 
fluctuations with the (n + I )-order correction given by the convolution integral from 
the n-order one. As we shall show in the next section this property allows one to derive 
the effective Darcy's Law for average unsteady flow in media of stationary conductivity. 

The steady-state distribution of the head is determined by applying the inverse FT 
to the function A"(k) = lim, irx, h(k, tj = 1imA+" A&k, A). It is seen that the FT of h"(x) 
is obtained from (10)-(12) by setting A = 0 and &(k) = 0. 

3. Average flow equations 
We proceed now with deriving the averaged Darcy's Law for unsteady flow in media 

of stationary conductivity. At the same time we determine the general solution of the 
average flow problem, namely the distribution of the mean head in space and time. This 
is carried out by solving (1 1) to consecutive orders for n = 0,1, . . . and by substituting 
the results in (10). The expected value of the latter yields the expression for the FLT 
of the mean head (h ) .  The relation between the FLTs of the mean velocity and the 
mean head gradient is derived in a similar way. The details of the derivation are given 
in Appendix A. Herein we summarize the main results of Appendix A. 

Thus, the effect of heterogeneity on the average flow is manifested through the 
tensorial function G(k, A) defined by a series 
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The second-order tensors in series (13) depend on the FT of the (n + 1)-point 
correlation function (6) : 

@(k,,  . . . , k,,,) = 1.. . i d r l . .  . drTAp(rl,. . . , r,)exp 

and their components are given by 

( n =  1,2 ,...; m,z= 1 ,..., d ) .  

The FLT of the mean head is obtained in Appendix A as 

&O’(k, A) 
(h(k, A))  = -a- 

Y(k* h) ’ 
where h ( O )  is given by (12) and the function ?is defined as the normalized contraction 
of D with respect to the wave vector k :  

Owing to the nature of 52 the function f depends only on the heterogeneity structure. 
The solution (16) determines the FLT of the mean head. It shows how the initial 

condition and the sources are represented by the term I?’), whereas the structure of 
heterogeneity is embedded in the function p. For homogeneous media ? = 1 and (16) 
yields the solution of (3), (4) with K(x) = KA.  

The effective Darcy’s Law in the Fourier-Laplace space is given by a linear relation 
between the FLTs of the mean velocity and head gradient: 

(6,(k, 4) = -&,z(k, 4 (-G(k, A)), 

&L$(k, A) = KAIGml - f(k, A) SZ,,(k, A)]. 

(1 8) 

(19) where 

It follows from (13)-(15), (17) and (19) that / ieff(k,A) depends only on the statistics 
of the conductivity K. It is easy to check using (17) and (19) that the function f ( k ,  A) 
is related to normalized contraction of the tensor keff(k,A) as follows: 

k KPff (k ,  A) - k h 
?(k,A) = +- 

KA(k2+A) kZ+A’  

Expressions (13)-( 19) represent a general solution of the problem of average unsteady 
flow in the Fourier-Laplace space. Given the initial conditions and source function, the 
mean head distribution is obtained by applying the inverse FLT to (16). The 
fundamental property of this solution is a local dependence of the velocity’s FLT on 
the FLT of the mean head gradient. Applying the inverse FLT to (18) yields the 
relation between the mean velocity and the mean head gradient in the form of a 
temporal-spatial convolution integral : 

(v,(x, t ) )  = - d7 dx’Kzf(x-x’, t - T )  {EL(x’, 7)). (21) i : i  
In (21) the kernel K$f(x, t )  is the inverse FLT of f@{(k, A) and therefore is completely 
determined by the statistics of K(x). Since (21) is applicable for any deterministic source 
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function Q(x, t )  and any initial condition h,(x), relation (21) defines the effective 
conductivity as a convolution integral operator in space and time. The kernel of this 
operator is a tensorial function of x and t whose FLT is given by (19). The function 
k e f f ( k ,  A) (19) is referred to as effective conductivity tensor. 

It is important to note that (21) was obtained for a potential vector ( E )  

(E(x ,  t)> = V(h(Jc, 4). (22) 

The condition (22) does not render a unique Keff(x,t) and keff(k,A). Thus, any 
tensor A(x, t )  satisfying a divergent-free condition V . A ( x ,  t )  = 0 (or its equivalent an&, A ) k ,  = 0 in the Fourier-Laplace domain) can be added to the kernel 
Ketf(x, t)  (the effective conductivity tensor / iEff (k ,  A), respectively) such that the 
effective Darcy’s Law is not affected. Indeed, 

a(h(x’. 7)) 
- [ d7 jdx ’  [K:i{(x - x’, t - 7) + &(x- x’, t - T)] 

ax; 

= -J:d~jdx’K${(x-x’, t-7)(EL(x’,7)) = ( v , (x , t ) ) .  

It is easy to see from (20) that this non-uniqueness of the effective conductivity tensor 
does not affect the function ? and the mean head distribution. 

The effective Darcy’s Law (21) coupled with the averaged mass balance equation 

constitute a mathematical model of average unsteady flows in stationary media. The 
mean head obeys the linear integro-differential equation resulting from substitution of 
(21) and (22) into (23): 

and is determined uniquely for given initial coindition (8) and source function 4. The 
fundamental solution of (24) corresponds to the flow toward a single source and 
constant initial head distribution, i.e. Q(x, t )  = S(x)S(t) and h,(x) = 0. This solution 
G(x, t )  is called the mean Green function. Its FLT 6(k ,  A) is completely determined by 
the contraction f(k,A) and results from (12) and (16) as follows: 

1 
G(k, A )  = 

f(k, A) (k2 + A) .  

For the purpose of illustration, let consider the important case of a flow toward a 

(26) 

single pumping well of discharge Q(t). The FLT of the mean head is given by 

( h k ,  4) = Q(4 G(k, 4, 
where Q ( A )  is the LT of Q(r). The inverse FLT of (26) yields the distribution of the 
mean head in space and time. 
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4. Mathematical model of average steady flow 

previous section by setting h = 0. In the Fourier space it yields 
The mathematical model of steady-state flows is obtained from the results of the 

where O(k) = Q(k, h = 0). The expression for the effective conductivity tensor (20) is 
simplified to 

k keff (k)  - k 
F(k) = 

K* k" 

In the physical domain the effective Darcy's Law is obtained from (28) in the form 
of the spatial convolution integral 

( v ~ ( x ) )  = - dx' K${(x - x') (Est(x')) ,  s 
where the kernel Keff(x) is the inverse FT of Rcff(k>, (29). The mean velocity (v) obeys 
the equation V . (~ (x) )  = q5(x). The steady mean Green function results from (27) as 
follows : 

G"(k) I = 1. 1 
Y( k) k2 (33) 

The results of this section have been derived previously by direct averaging the 
equations of steady flow (Indelman & Abramovich 1994b). 

5. General analysis of the averaged Darcy's Law 
The objective of this section is to study general properties of the effective Darcy's 

Law. Starting with the steady case, the effective conductivity defined by (29) generalizes 
the concept of effective property for uniform average flows. Indeed, for the uniform 
flow case ( E )  = ( V h )  = const and (32) lead to the local averaged Darcy's Law 

(02) = dx K$f(x) { E f t )  = &{(k = 0) ( E f t ) .  (34) I 
Comparison of (34) and (1) yields 

(0) 7 (35)  Keff = i e f f  

i.e. the effective conductivity for mean uniform steady flow is the value of the effective 
conductivity tensor keff(k) of non-uniform steady flow at k = 0. 

Similarly, (32) may be obtained from (21). In Fourier space we have 

(fi:(k)) = limh(8,(k,h)) = -l&(k,h = O)limh(Et(k,h)) = -l?zf(k)(E;t(k)). 
n > o  Ai-0 

(36) 
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It is seen from (35) that the uniform effective conductivity K e f f  is the value of the ECT 
of unsteady flow at k = 0 and h = 0. Thus at large times 

(3 7) K “eff ( k ) = keff(k, 0); Keff = Reff(0) = Reff(O, 0). 

In contrast, for small times the effective Darcy’s Law takes the form 

lim (6,(k, t ) )  = - Iz“d[(k, h = co) lim (&(k, t ) )  = - KA lim (&k, t ) ) ,  

i.e. the effective conductivity of the medium is equal to the arithmetic mean. 
Excluding several special cases of the conductivity spatial distribution (Neuman & 

Orr 1993)’ uniform mean steady-state flow in an unbounded domain is the only case 
for which the averaged Darcy’s Law has a local structure. For any other case relation 
(21) shows that the mean velocity depends on the distribution of the mean head 
gradient in the whole flow domain and on the process history. 

Note also that in general the effective conductivity tensor depends on the shape of 
the conductivity correlations. However, there are several cases when this dependence 
is no longer present and the effective conductivity tensor becomes a function of the 
conductivity statistics rather than a functional. Thus, we show in Appendix B that for 
one-dimensional unsteady flow the effective conductivity tensor is a functional of the 
conductivity multipoint correlations. This dependence on the conductivity statistics 
vanishes with t+co (h+O) and the perturbation series is summed to yield the well- 
known steady-state effective value Kfr .  The second case when the dependence on the 
correlation structure vanishes is a two-dimensional steady uniform flow in an isotropic 
medium. This case corresponds to the limit k +- 0 and h + 0 and for an even p.d.f. of 
the logconductivity the effective conductivity is equal to the geometric mean (Matheron 
1967b; Dykhne 1970; Abramovich 1977). The third case corresponds to the initial 
stage of unsteady flows for which limA-mkejj(k,h) = Kd.  These cases exhaust our 
knowledge about closed formulae for the effective conductivity of continuous random 
media. It was shown recently (Indelman & Abramovich 1994a; Abramovich & 
Indelman 1995) that the effective property for uniform steady-state flow in a three- 
dimensional log-normal isotropic media and in anisotropic media of any dimen- 
sionality is a functional of the correlation structure. We conclude this discussion by 
saying that the ECT of unsteady processes is a function of two variables and a 
functional of the conductivity correlation structure. 

Dagan (1982) has studied unsteady flows without sources. Assuming a slowly 
varying mean head gradient he has arrived at a local averaged Darcy’s Law in the form 

(38) 
t + a  t -0 t+u  

( U r n ( &  0 )  = - K X )  (&(% 0).  (39) 
The assumption of small variabilities of the mean head gradient in time and space 

is equivalent to moving ( E )  out of the integrals in (21). This leads to the following 
expression for K:L in (39): 

It follows from (36) and (38) that for small times limt+o Kz,( t )  = KA4 S,, whereas for 
large times lim, ,ocI Kz,(t)  = KE{f in agreement with the first-order results obtained by 
Dagan (1 982). 

Summarizing the results obtained so far, a mathematical model of unsteady average 
flows in random media of stationary conductivity was developed. We have derived a 
general solution of the governing equations and have shown that the flow parameters 



48 P. lndelman 

of interest (mean head, its gradient, mean velocity) are expressed with the aid of the 
d x d tensorial function D(k, A), where k and A are the Fourier and Laplace variables, 
respectively. This function depends only on the conductivity statistics and does not 
depend on the distributions of the sources and the initial head. It determines all the 
features of the average flows stemming from the medium random heterogeneity. We 
have shown that Q(k, A) is simply related to the effective conductivity tensor and to the 
fundamental solution of the averaged equation for the mean head which we have called 
the mean Green function. Although the function D is defined in an explicit manner by 
the multidimensional integrals over the multivariate conductivity correlators, its 
rigorous calculation represents a very cumbersome and complicated problem. In the 
remainder of the paper we apply the general results to weakly heterogeneous media and 
study the properties of unsteady average flows by deriving a first-order approximation 
of the effective Darcy’s Law in the conductivity variance. 

6. First-order analysis 
The first-order approximation of the effective conductivity tensor in the variance a2 

of the fluctuation ~ ( x )  results from retaining terms in (19) up to a2-order. Since 52 in 
(13) is a sum of and AXn) = @an) the general expression for the effective 
conductivity tensor (1 9) simplifies to 

lqi{(k,  A) = KA[arnl - &&, A)],  (41) 

where 

Here, @(k) is the spectrum of heterogeneity, i.e. the FT of the autocorrelation function 
p(r) of K.  

The function f ( k ,  A) determining the mean Green function (25) results from (20) as 
follows : 

k2 
k”+A’ 

f(k, A) = 1 - a‘2g(k, A) - (43) 

where g is the normalized contraction of the tensor 8 with the vector k and is given by 

The FLT of the mean Green function is simply expressed in terms of the function g: 

1 k2 
(k2 + A)2 ‘ 

G(k, A) = r+ azg(k, A )  
k + A  (45) 

The first term in (45) is the FLT of the Green function for flow in a homogeneous 
medium. The second term represents the first-order correction to the flow due to the 
medium heterogeneity. 

Equations (41) and (42) show explicitly the dependence of the effective conductivity 
tensor on the shape of the correlation. Consider the trace of the effective conductivity 
tensor resulting from (41) : 

where $ is the trace of the tensor 4: 
Tr kef f (k ,  A) = K,[d- a2$(k, A)],  (46) 

&k, A )  = Trs(k, A) = / * L O ( k - p ) .  ( 2 7 q p 2  + A (47) 
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It is seen that the trace of the effective conductivity tensor depends on the shape of 
the correlation as well since the trace of S (47) does. Only for small and large times 
(large and small A, respectively) does the dependence on the correlation structure 
vanish and we have 

Tr kef f (k ,  0) = K,(d- cr'); Trkeff(k, 00)  = dK,. (48) 

The first result in (48) recovers the property of the effective conductivity tensor trace 
for steady-state flow (Indelman & Abramovich 1994b), whereas the second one is in 
agreement with (38). A second scalar function of interest is the contraction of keff with 
the vector k :  

= K,[l -c~'g(k,A>]. 
k - k e f f ( k ,  A) - k 

k2 (49) 

It is seen that the normalized contraction of the effective conductivity tensor depends 
on the correlation function for any finite A ,  i.e. for t > 0. 

The results of this Section are applicable to any structure of the conductivity field 
and to any number of space dimensions. To determine the effective conductivity tensor 
one has to specify the spectrum @ and to calculate the tensor 2, (42). As a rule the latter 
cannot be done analytically and hence numerical integration is required. In the 
following we apply the results of this section to one-, two- and three-dimensional flows 
in isotropic media. 

7. Effective conductivity of isotropic media 
The structure of the effective conductivity tensor is considerably simplified for 

isotropic media owing to the dependence of the spectrum @ only on k = Ikl. Thus, g, 
(44), and $, (47), become functions of k and A. Since Keff depends only on the 
properties of medium and the latter has no preferential directions in space, the effective 
conductivity tensor is an isotropic tensor. The general form of the isotropic tensor is 
given by 

where kt' and kz are the transverse and longitudinal components depending on k and 
h only. 

The longitudinal and transverse components are determined by calculating the trace 
and the contraction of (50) and by comparing them with (46) and (49). This yields 

Kz(k, A) = KA[ 1 - cr"(k, A)], (51) 

The effective conductivity tensor (50), (51) and (52) is given by a full isotropic tensor 
whose components depend on the two functions g and $ of k and A. For large time 
( A + O ) $ +  1 and (50), (51) and (52) yield the effective conductivity tensor for 
steady-state flows 

( 5 3 )  
where g(k)  = g(k, 0). 

We have shown that the effective conductivity tensor cannot be defined uniquely for 
a potential vector E. Any solenoidal tensor can be added to the kernel K e f f ( x , t )  

Kz(k)  = KA[ 1 - cr2g(k)] = KA Y(k), 
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without affecting the distributions of the mean head and the mean velocity. Since the 
transverse component in the representation (50) is the FT of such a tensor, it does not 
contribute to the mean head distribution, its gradient or the mean velocity. Thus, the 
mean head is completely determined by the longitudinal component kz-defined by 
(51). In this sense we can rewrite the averaged Darcy’s Law in the Fourier-Laplace 
domain as follows 

(fi(k, A))  = - kL(k ,  A) (B(k, A ) ) ;  (i?(k, A) )  = -ik(i(k, A)),  (54) 

and regard the longitudinal component k z ( k ,  A) as an effective conductivity of isotropic 
formations in Fourier-Laplace domain. The averaged Darcy’s Law is now simplified 
to 

(u(x ,  t ) )  = - d7 dx’K‘(IX-X’l,t-7)(E(x’,7)), ( 5 5 )  L S  
where K‘ is the inverse FLT of I?’. 

The averaged Darcy’s Law (55) represents a constitutive equation for isotropic 
media. Coupled with the averaged mass balance equation (23) they constitute a 
mathematical model of unsteady flows in stationary isotropic media. To solve the 
system of equations (23), (55) one needs an initial condition (8) and a distribution of 
the sources q5 in space and time. The averaged equations can be considered as a model 
of deterministic flow in an effective medium whose conductivity is a convolution 
integral operator. Owing to the non-local nature of the constitutive equation, the 
direction of the mean velocity does not generally coincide with that of the mean head 
gradient. Only for unidirectional flows (e.g. a flow toward a single well) are the vectors 
(v) and ( E )  collinear (this follows from subsituting the representation (E(x,  t ) )  = 
&(x, t ) x / x  of the mean head gradient into (55)). Note, that in Fourier-Laplace space 
the mean velocity (54) is parallel to the mean head gradient. 

The effective conductivity (51) is a function of two variables, k and A. We now study 
its properties by first deriving the bounds restricting the range of variability of 
&&A). Remember that for uniform steady mean flow the effective conductivity is 
bounded between harmonic and arithmetic means (2). If the flow is steady-state but 
non-uniform in the average, the effective conductivity satisfies the narrower inequalities 

(56) 

resulting from (43), (44) and (53). 
The inequality (56) generalizes (2) for non-uniform mean steady flows. Note that 

keff (k)  is no longer a constant tensor for a given structure of the medium. The 
heterogeneity structure determines the upper limit Keff in (56) where k e f f ( k )  varies in 
the Fourier domain between the values KH and Keff, approaching lower and upper 
bounds in the vicinity of and far from the sources of flow non-uniformity. This shows 
that (56) are best bounds. 

For unsteady flows expression (51) shows that the effective conductivity is bounded 
between the effective conductivity tensor for a steady-state process and the arithmetic 
mean : 

K H /  < kef f (k )  < Keff,  

keff (k> d Reff(k, A) d KA /. (57) 
Note that unlike (2) and similar to (56) the inequality (57) provides bounds 

dependent on the structure of the medium. It cannot be improved since both bounds 
are reached in the flow process. Recalling that the steady-state effective conductivity 
tensor keff is bounded between the harmonic mean KH and the effective conductivity 
tensor for steady-state uniform flow (56) which in turn is greater than the harmonic 
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mean and less than arithmetic mean (2), the following general bounds are valid for any 
k and A :  

KH I < Kejf(k, A) < KA I .  (58)  

The inequality (58) generalizes (2) and (56) for unsteady flows. It depends only on 
the two values KH and KA and in this sense is invariant to the porous medium structure. 
It is emphasized that for any heterogeneous medium (58) provides the best estimate 
among others with constant bounds since both KH and KA are met in the flow process. 
Indeed, the low limit is achieved at k = 00 and h < co, i.e. in the vicinity of the sources 
of flow non-uniformity, whereas the upper limit occurs at h -+ 00, i.e. at the initial stage 
of the process. It is emphasized that although the estimates (56),  (57)  and (58) are 
presented in general form they are derived here at first order in the conductivity 
variance. Their validity for strongly heterogeneous media has not been proved yet. 

Relationship (51) shows that K‘ is completely determined by the one function g of 
two scalar arguments k and h and we proceed now with deriving this function for one- 
two- and three-dimensional flows. 

For one-dimensional flow the function results from (44) as follows: 

For d 3 2, switching in (44) to the new variable u = p -k and subsequently to the 
d-dimensional spherical coordinate system yields 

where T ( d )  is the Gamma function, 6 = h/k2  and 

Calculatingf, from (61) for d = 0, 1, 2 and 3, the functions F, and 4 for two- and 
three-dimensional flows are obtained as follows : 

In 
4u 

Expressions (59)-(63) show explicitly the dependence of 2 and K e f f  on the shape of 
the correlations. In particular, for steady-state flows the function g(k) = g(k, 0) is 
simplified to 

with 

Several examples of closed expressions of g(k) can be found in Indelman & 
Abramovich (1994b). 
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FIGURE 1 .  Dependence of g on k’ = kl and A‘ = hlz and for a Gaussian conductivity correlation. 
(a) One-dimebsional flow: (i) A‘ = 0, (ii) A’ = 0.1, (iii) A’ = 0.5, (iv) A’ = 1, (v) A’ = 5, (vi) A’ = 10, 
(vii) A‘ = lo2, (viii) A‘ = lo3. (b)  Two-dimensional flow and (c) three-dimensional flow: (i) A’ = 0, 
(ii) A’ = 0.1, (iii) A’ = 1, (iv) h’ = 5, (v) A‘ = 10, (vi) A‘ = lo2, (vii) A’ = loa. 

The function g(k ,h)  was calculated for a Gaussian correlation as a function of 
k’ = kl and for different values of A’ = h12 where 1 is the scale of heterogeneity. It is 
depicted in figures 1 (a), 1 (b)  and 1 (c) for one-, two- and three-dimensional flows, 
respectively. The effective conductivity kz  = K A [ l -  $21 depends on the variance of e. 
For given c2 it is seen from figure 1 how kz varies in the Fourier-Laplace space for the 
entire process of unsteady average flow. In agreement with the general results for any 
k the longitudinal component &k, A )  varies from the effective value for steady flow 
kz(k,O) at small h (large times) to the arithmetic mean KA at large h (small times). It 
is seen that at small k, i.e. at distances from the sources of flow non-uniformity much 
larger than the integral scale, the effective property varies from the effective value 
KA(l - v 2 / d )  for uniform steady flow to the arithmetic mean. This generalizes the 
Dagan’s (1982) result obtained for unsteady flows without sources. It is seen that close 
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to the sources of flow non-uniformity (e.g. in the vicinity of a well or of steep gradients 
in initial head distribution) the effective conductivity varies between the harmonic and 
arithmetic means approaching the bounds at small and large h (at large and small 
times, respectively). At large times (small A) Kz varies from the harmonic mean at wells 
to the uniform steady-state effective value far from the well in agreement with 
Shvidler’s (1966) asymptotic limits of the mean Green function for a flow toward a 
single source. 

8. Asymptotic analysis of the averaged Darcy’s Law for isotropic media 
Although some limit values of the effective conductivity tensor were obtained in the 

previous Sections it is important to investigate the asymptotic dependence of average 
flows on distances from the sources of mean flow non-uniformity much greater than 
the scale of heterogeneity I (small-scale heterogeneity (Shvidler 1985)). To derive this 
asymptotic behaviour we consider the effective Darcy’s Law in the Fourier-Laplace 
space (54) with kz given by (51) and (44). For k’ = kl 4 1, the spectrum @(k-p)  can 
be expanded in a power series of k as follows: 

@(k -p)  N @(p)  - (k  - V) @(p)  +i(k - v)2 @(p) .  (66) 

Expansion (66) is substituted in (44). Since the spectrum is an even function, the 
second term in (66) does not contribute to g’(k, A). It is convenient to introduce a new 
variable u = lp and a function Y(u)  = P Q s ( p ) .  The function 2, (44), becomes after 
some algebraic operations 

g(k, A’) N bd(h’) + &,(A’) 1 2k2 (kl < l), 
where A’ = h12 and 

du ( k . ~ ) ’  

In (68) and (69) we switched to spherical variables and integrated over the angle. 

uniformity the averaged Darcy’s Law is expressed in the form 
The asymptotics (67) shows that far from the sources of the mean flow non- 

<u(x,t‘)) = - K A  d7[Pd(t’-7)+ad(i‘-7)V2](E(x,7))} (kf 3 l), 

(70) 
where t’ = t / P  and Bd(t’) and a,(f’) are the inverse LT of bd(A’) and &(A’), respectively. 
It is easy to check that Pd(t’) = -db,(t‘)/dt‘ where bd(t’) is a function obtained by 
Dagan (1982) and is given by expression (A 2) of his article. This is expected, since at 
distances far from the sources of the non-uniformity (k  = 0) the asymptotic (67) should 
lead to (39), (40) if (E(x, t ) )  varies slowly in time. For exponential covariance the 
function Pd( t )  is easily determined from expressions (A 3)-(A 5 )  of Dagan’s (1982) 
paper for d = 1, 2 and 3. The corresponding expressions for Pd(t’) for a Gaussian 
covariance are obtained as 

Pd(t’) = 2( 1 + 4t’)-(l+d’? (71) 
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The second term of the integrand in (70) describes the effect of the flow non- 
uniformity on the velocity field at distances far from the sources. The kernel a,(t’) 
results from (69) after switching to spherical coordinates and applying the inverse LT: 

In particular, for a Gaussian covariance (72) yields 

It is seen that for small times and at large distances from the sources of non- 
uniformity the averaged Darcy’s Law is approximated by a local relation with 
arithmetic mean standing for the effective conductivity: ( u )  = - K , 4 ( E ) .  In contrast, 
for large times the asymptotics (70) leads to the steady-state one derived previously by 
Indelman & Abramovich (1994b). Thus, for a Gaussian correlation we have using (71) 
and (73) 

( u s ~ ( x ) )  = lim (u(x,  t’>> = - lim A’ [~ , (A ’ )  + 12kd(h’) v2] (E(x ,  A’)) 
t’*m X - 0  

= - KA { 1 - g2 laCL d7[ Pd(7) + l2a,(7) V2]} ( E S t ( x ) )  

- pff 1.-&-- d- 1 12V2] (E“‘(x)) ,  
-- [ 2d(d+2) (74) 

where Kef f  = K,(l- 2 / d )  is the effective conductivity for steady-state uniform flow. 
Similar asymptotic expressions can be derived for any covariance of finite integral 
scale. 

The important question is what are conditions needed for neglecting the spatial non- 
local term in (70). Let lE be the characteristic scale of the mean head gradient defined 
by V2(E(x ,  t ’ ) )  - 1i2(E(x, t’)). It follows from (70) that the term with V2 can be 
neglected if the characteristic scale of the flow non-uniformity lE satisfies the condition 

Thus inside the flow subdomains, where the characteristic scale lE of the mean head 
gradient obeys (75), the averaged Darcy’s Law can be approximated by a relation local 
in space and non-local in time: 

(v (x ,  t‘)) = - K A  (E(x,  t‘))-a2 d~fld(tl-7) ( E ( x , ~ ) )  (76) 1 
Hence, for a Gaussian correlation relation (76) is applicable if 

It is seen that condition (77) depends on the stage of the process. It follows from (73) 
that yn(t’) has a maximum at t’ = 1/2 for any d and y,(1/2) varies slightly in d. 
Therefore the sufficient condition of applicability of (76) for d = 1,2,3 is given by 
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lE B 0.31~~1. For comparison, the corresponding condition for ZB in steady flow results 

or 1: + 0.2601 for d = 2 and 3. 

9. Summary 
The aim of the present study is to develop a procedure of averaging unsteady flows 

in heterogeneous formations of stationary conductivity and to study the properties of 
the mean flows. This procedure generalizes the approach proposed previously for 
steady flows (Indelman & Abramovich 19943) and is based on applying the 
Fourier-Laplace transform to the flow equations which are further solved by 
perturbation methods. The advantage of this approach is that in Fourier-Laplace 
domain the dependences of the mean flow quantities (mean head. its gradient and mean 
velocity) on the heterogeneity structure on one hand and on the initial head and the 
distribution of the sources on the other hand are decoupled and have a local structure. 
Applying the inverse FLT permits one to determine the mean flow in the physical 
domain. 

One of the central problems of flows in media of random structure is in deriving the 
averaged Darcy’s Law. The main result of our study is a linear local relation between 
mean velocity and mean head gradient in Fourier-Laplace variables. The coefficient of 
proportionality which we call the effective conductivity tensor depends only on the 
statistical properties of a random field K(x) .  The inverse FLT yields the averaged 
Darcy’s Law in physical variables. This relation defines the effective conductivity as a 
convolution integral operator over space and time operating on the mean head 
gradient. The kernel of this integral transform is the inverse FLT of the effective 
conductivity tensor and is completely known for a given structure of the porous 
medium. 

Our second result is related to the mean head distribution. It is shown that the FLT 
of the mean head is given by a product of two functions. The first function is a FLT 
of the solution of the problem for homogeneous media. The second one depends only 
on the structure of heterogeneities and is simply related to the effective conductivity 
tensor. Thus the effect of the heterogeneities on the mean head is concentrated into one 
function pwhich is of the utmost importance in describing average flows. In particular; 
this function determines the FLT of thc fundamental solution of the mean flow 
equations which is referred to as the mean Green function. 

We study further the general properties of the averaged flows. It is shown that 
the kernel of the effective conductivity is not defined uniquely. However, this 
non-uniqueness does not affect the distributions of the mean head, its gradient 
or the mean velocity. We show that the effective conductivity for unsteady flows 
generalizes the concept of the effective property for steady-stale non-uniform flows. 
The latter, in turn, is a generalization of the uniform version of effective properties. 
These properties are manifested in the following relationships between the effective 
conductivities of different processes : Keff = Keff(k = 0) = keff(k = 0, h = 0) and 
keff(k) = keff (k ,  h = 0). It is emphasized that in general the averaged Darcy’s 
Law has a non-local structure with effective conductivity being a functional of the 
conductivity statistics. 

These general results are applied to flows in weakly heterogeneous media to derive 
the first-order approximation of the effective conductivity tensor in terms of the 
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heterogeneity spectrum. We determine a general structure of the effective conductivity 
tensor of isotropic media by deriving expressions for the longitudinal and transverse 
components of the isotropic tensor. We note that the transverse component of the 
effective conductivity tensor does not contribute to the mean head distribution and the 
mean velocity field and in this sense can be dropped. The averaged Darcy's Law is now 
expressed by the convolution integral operator whose kernel is a scalar function equal 
to the longitudinal component. The results are applicable to any number of space 
dimensions. The FLT of the longitudinal component k' is further investigated for one- 
two- and three-dimensional flows. We develop an asymptotic model of the effective 
Darcy's Law applicable for large distances from the sources of mean flow non- 
uniformity (small-scale heterogeneity). The constitutive equation can be localized in 
space for mean flows whose characteristic scale is much greater than the correlation 
scale. 

The new bounds for the effective conductivity tensor generalizing those known for 
steady uniform flows are proved for weakly heterogeneous media. It is recalled that the 
effective conductivity of steady uniform flows is bounded by harmonic and arithmetic 
means. This is an inequality which bounds the possible values of the effective property 
for different structures of the porous media. Our new assessments have a dynamic 
nature. The first inequality bounds the effective conductivity tensor for unsteady flow 
between the effective conductivity tensor for steady non-uniform flow and the 
arithmetic mean. In turn, the effective conductivity tensor of steady non-uniform flows 
is bounded between the harmonic mean and the effective conductivity for uniform 
mean flows. We note that these estimates cannot be improved since both lower and 
upper bounds are met in the flow process. The weaker assessment of the effective 
conductivity tensor coincides with the aforementioned one for steady uniform cases. 

It is emphasized that the first-order results of our study are applicable for small 
coefficients of variations of the conductivity. This is quite a restrictive assumption 
which is usually not met in natural formations. It is well known that expanding the 
head in series in the log-conductivi ty fluctuations considerably alleviates this restriction. 
The perturbation series applied in the paper was chosen to shorten the derivations and 
reformulation of the final results in terms of the log-conductivity statistics is 
straightforward. 

Summarizing, the mathematical model of unsteady flows in media of stationary 
conductivity is developed to be applicable to any initial condition and distribution of 
the sources. The constitutive equation of the effective medium, the average Darcy's 
Law, defines the effective conductivity as a convolution integral operator in space and 
time. The properties of the effective conductivity tensor are studied for general 
structures of heterogeneity and for small fluctuations of the conductivity. 

Appendix A. Averaging of the flow equations in Fourier-Laplace space 
The equations of the average flow are derived by perturbation methods using the 

procedure developed recently for steady-state flows. (Indelman & Abramovich 1994b). 
Consider an approximation of the head of the order of n given by (1 1). Replacing kn-l) 
by (1 1) for n - 1 and continuing this procedure subsequently yields the following 
expression of the FLT of : 

x E(k-p,) ;(PI -pz).. . Qn-, -p,) h(")(prL, A) (n = 1,2, . . (A 1) 
where the zero-order approximation of the head is given by its FLT (12). 
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The mean of the n-order approximation of the head is obtained by averaging (A 1). 
Since the conductivity is a stationary space function, the correlation in (A 1) can be 
expressed in terms of the spectrum function by 

('('-PI) ' ( P I  -P,> . . . ' b q L - 1  -Pn)) = (27~)~  @(k,p, ,  . . - ,pn-1) S(k-p,), (A 2) 

where @(k,p, ,  . . . ,pn .  ,) is the Fourier transform of the n-point correlation function of 
the process e(x) defined by (14). Averaging (A 1) and substituting (A 2) yields 

k * 122(n)(k, A) * k 
( P q k ,  A ) )  = -&')(k, A) (n = 2,3,. . .), 

k2+A 

where O(")(k, A) is a tensor given by 

(A 4) 
The FLT of the mean head now results from (A 3 ) :  

where @O)(k, A)  is completely defined by the initial head distribution and the source 
function and l2 is a tensor given by the series 

n = CL 

O(k,h) = c SZ'"'(k,A); = u(G-n). (A 6) 
n=z 

In general the mean head distribution depends on the properties of the medium, the 
initial condition and the distribution of sources. The remarkable property of solution 
(A 5 )  is that the FLT of the mean head is obtained as a product of two functions. The 
first term on the right-hand side of (A 5 )  depends only on the structure of medium, 
whereas the second one is completely determined by the initial head distribution and 
the source function. It is precisely this splitting of the solution into two terms, one of 
which carries information about the structure of heterogeneity whereas the second 
term specifies the initial and source conditions, that permits one to derive the local 
averaged Darcy's Law in the Fourier-Laplace domain. 

(E(k, A) )  = - ik(h"(k, A)).  

The FLT of the mean head gradient now results from (4) as 

The FLT of the mean velocity is obtained from (4) as follows: 

(W,  A ) )  = - K A  [ ( ~ ( ~ , ~ ) ) - J ~ ( ~ ( k - ~ ) ~ ~ , A ) ) ] .  (A 7) 

Using (A 1) the integral in (A 7) can be rewritten in the form 
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Substituting (A 2) into this expression transforms the latter to 

Using (A 5)  and (A 4) we have 

where 
[ k * Sl(k, A)  - k]]' 

F(k,A)= 1+- k 2 + h  

Substituting (A 8) into (A 7 )  yields 

<O,(k, 4) = - K A [ L l -  f@, 4 Q,,(k, A l l  <&k? 4). (A 9) 

It follows from (A 4) and (A 6) that D and, concurrently, 2 depend only on the 
statistics of the conductivity K and do not depend on the initial head distribution or 
source function. 

Appendix B. Effective conductivity for one-dimensional flow 
For one-dimensional flow 

I' k2 
F(k, A) = 1 +,-52(k, A) , [ k + A  

1 - (A/h + kZ) Q(k ,  A) 
1 + (k2/A + k2) Q(k ,  A)  K A *  

and (19) becomes W ( k ,  A)  = 

Here 52 = 2z=2Q(nj with 51("), (15) simplifying to 

Substituting the definition (14) of the spectrum function @(k,p,, . . . , p J  into (B 2) yields 

io x 
52(n+1)(k, A )  = f . . . 1 dx, . . . dx, exp (ikx,) (e(0)  e(x1) . . . ~(x,)) 

J - c c  J - m  

+ . . . + ipll-l(xn -x f i -J  - ip, x,]. 

Integrating over pl,. . . , p n  in (B 3) leads to 

i(i a 

Q("+"(k, A) = ( . . . f dx, . . . dx, exp (ikx,)p(x, ,  . . . , x,) 
J--30 J - o  
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where a, = X ~ + ~ - X ~ ,  I = 1 ,..., n-1 ,  a ,  = x,. (B 5 )  
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Expression (B 4) shows explicitly that and hence D and &jf(k, A) depend on the 
correlation structure of the conductivity field, i.e. K e f f ( k , A )  is a functional of the 
conductivity spatial moments. However, for large times (small A) this dependence 
vanishes and k?ff(k, A) tends to the harmonic mean whch is the effective conductivity 
of the steady-state one-dimensional flow. Indeed, for A = 0 (B 4) becomes 

(5 x, 

!L?(,+l)(k) = l-, . . . l-m dx, . . . dx, exp (ikx,)p(x,), . . . , x,) 

x~(x,-x,)  ... S(X,-X,_,)~(X,) = (~"+~(0 ) ) ,  (B 6) 

and therefore 

Substituting (B 7) into (B 1) for h = 0 and recalling that K(x)  = K A [ l  -c(x)] yields 
finally 

- K H .  
1 g,ff = KA - 

((1 -€)-I) - - 
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